GLADE:
a Framewor k
for Building Large Object-Oriented
Real-time Distributed Systems

Laurent PAUTET

Samuel TARDIEU

{pautet,tardi eu} @nst.fr

Ecole Nationale Supérieure des Télécommunications
Computer Science and Networks Departement
46, rue Barrault
F-75634 Paris CEDEX 13, France

Abstract

This paper describes how GLADE, our implementation of
the Ada 95 Distributed Systems Annex, can be used to build
large object-oriented real-time distributed systems. In ad-
dition to the powerful distribution features included in the
Ada 95 language itself, we provide extensions to help the
programmer build robust and failsafe distributed applica-
tions.

1. Introduction

It is generally admitted that Ada 83 had a strong fo-
cus on real-time, mission-critical systems. But Ada 83
has been criticized from a number of standpoints, one of
them being its lack of cooperation with foreign program-
ming languages and with the outside world in general.
To fix those defects, new features were added in the lat-
est major revision of Ada, called Ada 95 [8]. Moreover,
Ada 95 is now the first standardized object-oriented lan-
guage (ANSI/ISO/IEC-8652:1995). It is also the first stan-
dardized language including distribution features.

A great effort was led by Ada Core Technologies (ACT)
to provide the Ada community with a free high-quality
Ada 95 compiler called GNAT. This compiler, which imple-
ments the core Ada 95 language as well as all the optional
annexes, belongs to the GCC family and shares its back end
with the C and C++ compilers. As the other compilers from
the GCC suite, GNAT supports many native and cross con-
figurations.

In collaboration with ACT, we have been developing
GLADE, an implementation of the Distributed Systems An-

nex of the Ada 95 reference manual. GLADE, which is
available under the same free license as GNAT, has been de-
signed for this particular compiler, but should be portable to
any Ada 95 compilation environment with minimal efforts.
We also worked on proposing new extensions to the orig-
inal Ada 95 model for distributing large programs. Some
of those extensions have been integrated in GLADE already
as they do not change the syntax or the semantics of the
language; some others require in-depth changes of the lan-
guage, and will be submitted as formal proposals to the
committee in charge of the next Ada revision.

Section 2 of this paper highlights the main features of the
Distributed Systems Annex. Section 3 describes GLADE,
our implementation of this annex. Sections 4 and 5 respec-
tively contain the real-time and fault-tolerance extensions
that we have designed and implemented. Finally, section 6
will briefly describe the current work in progress.

2. Ada 95: the perfect language for building
large OO real-timedistributed systems

The core Ada 95 language contains high-level features
available in most modern programming languages such as
inheritance and polymorphism. It also defines not-to-be-
found-everywhere paradigms such as data-driven synchro-
nization or hierarchical library units.

A validated Ada 95 implementation must support the
core programming language, and may support some or all
of the optional annexes contained in the reference manual.
Those “specialized needs” annexes cover various domains
such as real-time programming, system programming or
distributed systems. Each of these annexes has its own test

suite used for compiler validation.
2.1. Real-time features

Ada 83 already provided a number of tasking features
in the core language. New features have been introduced
in Ada 95 either in the core language or in the specialized
“Real-Time Systems” Annex:

e protected objects, asynchronous transfer of control and
requeuing facilities for task entries (core language);

e dynamic priorities and asynchronous task control
(real-time systems annex).

A protected object is similar to a conditional critical re-
gion [4] and a monitor [7]. Data encapsulated in a protected
object is accessed in mutual exclusion. Only procedures,
functions and entries can access this data. An entry is a sub-
program with an associated guard; a call to a guarded entry

is allowed if the guard evaluates to true (see sample 1).
procedure PO_Example is

protected type Semaphore
(How_Many : Natural := 1)
is
entry P;
—— Seize a resource
procedure V;
—- Release a shared resource
private
Available : Natural := How_Many;
end Semaphore;

prot ect ed body Semaphore is

entry P when Available >0 is
begi n
Available := Available - 1;
end P;
procedure V is
begi n
Available := Available + 1;
end V,;

end Semaphore;

S : Semaphore (2); —— Two resources

begi n
[...

—— Try to get a resource for 1 minute
sel ect
S.P;
then abort
del ay 60.0;
rai se Unable_To_Seize_Resource;
end sel ect;
end PO_Example;

Sample 1. Protected object example

This example also illustrates timed/conditional entry
calls, where a tentative call is made and gets aborted if it
is not served before another condition arises (in our case
the expiration of a delay).

2.2. Object-oriented features

Ada 83 already had the basic object-oriented features
such as abstraction, encapsulation, information-hiding, and
modularity. Ada 95 also includes modern data constructions
such as inheritance and polymorphism [17].

Types may be derived from and optionally extended as
soon as they are marked as “tagged”. A class designates
a tagged type (the root of the inheritance tree) and all the
derived types. All the primitive operations of a type (that
is, subprograms declared in the same scope as the type) are
inherited by its children, unless explicitly overridden. Sam-
ple 2 contains a tagged type “Event” and two derived types
“Information” and “Fatal_Error”.

As in Java, an Ada type can only derive from one par-
ent. However, this limitation can be easily worked around
by using well-known techniques such as sibling or mix-in
inheritance [2].

package OO_Example is

type Event is tagged

record
Dat e : String (1 .. 8);
Message : String (1 .. 8);

end record;
—- Root class type.

procedure Output (E : Event);
—— Primitive operation: screen output

procedure Handle (E : Event);
—— Primitive operation: do nothing

type Information is new Event with
record
File : String (1 .. 10);
end record;
—— Add field File to Event.

procedure Output (I I nformation);
—— Overload primitive operation Output

—- to have a file output. Primitive

—- Handle is not redefined.

type Fatal _Error is new Information with
record
Level : Natural;
end record;
—— Add field Level to Information.

procedure Handle (E : Fatal _Error);
—— Overload primitive operation Handle :

—— execute action depending on severity

—— level. Primitive Output is not

—— redefined (use of Information’s one).

type Any_Event is access all Event’ d ass;
—— Pointer type to any object in the
—— Event hierarchy.

end OO _Exanpl e;

Sample 2. Object-oriented example

2.3. Distribution features

The Distributed Systems Annex provides the developer
with a standardized way of partitioning an Ada application
across a network of computers. Communication between
the various partitions takes place using remote subprogram
calls or method calls on remote objects.

The remotely-called subprograms may be statically or
dynamically bound, thereby allowing applications to use ei-
ther the classical remote procedure call paradigm [3] (see
sample 3) or the increasingly popular distributed object
paradigm [12, 13] (see sample 4). High-level semantics of
the language are preserved when using the Distributed Sys-
tems Annex; for example, exception propagation works as
usual and timed subprogram calls can be used as if the pro-
gram was not distributed.

package RCI is
pragma Renote_Cal | _I nterface,;

procedur e Remote_Subprogram
(Paraneter : in out Integer);

procedur e Oneway_Subprogram
(Parameter : in String);
pragma Asynchronous (Oneway_Subprogram ;

end RCl;

Sample 3. Remote subprograms

package RT is
pragma Renot e_Types;

type Renote_(bject_Type is
tagged limted private;

procedur e Remote_Object_Method
(nj ect in Renpte_Qbj ect _Type;
Paraneter : out |nteger);

type Renpte_Cbj ect _Reference is
access all Renote_Object_Type' d ass;

—— This construct defines a remote

—— reference type that can point on

—— both local and remote objects.

private
type Renpte_(bject_Type is tagged linmted
record
Nane : String (1 .. 10);
end record;
end RT;

Sample 4. Remote objects

Ada incorporates facilities for programming distributed
systems as a consistent and systematic extension to those
provided for programming non-distributed systems. Thus,
the benefits of a type-safe object-oriented programming lan-
guage supporting both data-driven synchronization and con-
currency are made available for programming distributed
systems.

Some packages play a special role in distributed sys-
tems; they are identified by means of categorization prag-
mas, which describe the category each package belongs to.
A categorized package has to follow some extra legality
rules; for example, the declaration of a package whose sub-
programs can be called remotely must not contain data types
whose semantics are purely local (e.g., active types such
as task types). In addition to uncategorized packages (also
called “normal packages™) three categories are defined by
the Distributed Systems Annex:

e A package of category “Remote_Call_Interface” con-
tains subprograms that can be called remotely. Such a
package can be present only once in a distributed ap-
plication, unless transparently replicated.

e A package of category “Remote_Types” defines new
types with global semantics. For example, a linked list
type can be defined in such a package, provided that
additional marshaling and unmarshaling operations are
given by the programmer.

e A package of category “Shared_Passive” contains dec-
larations of objects that will be shared between several
partitions. This category will not be detailed in this pa-
per since it deals with shared objects, opposed to dis-
tributed objects.

Two other pragmas complete these categorizations.
When applied to a subprogram declared in a “Re-
mote_Call_Interface” package, the “Asynchronous”
pragma allows the caller to proceed immediately without
waiting for the completion of the remote subprogram.
Another pragma, “All_Calls_Remote”, forces all the calls,
even local, to go through the communication layers.

The Distributed Systems Annex does not describe how
a distributed application should be configured. It is up to
the programmer (using a partitioning tool whose specifica-
tion is beyond the scope of the annex) to define what the
partitions in his program are, and on which machines they
should be executed.

2.4. Distributed objects

Object-oriented and distribution features can be com-
bined to create distributed objects. Distributed objects in
Ada 95 are used in the same way as regular non-distributed
ones. However, a few restrictions apply to their type decla-
ration:

1. The target of a distributed reference must be a “pri-
vate” type, that is a type whose fields are not directly
accessible, except from within the package where the
type has been declared. One immediate consequence
is that the only way to access fields of a remote object
is to use one of its methods.

2. The target of a distributed reference must be a “lim-
ited” type. A limited type is a type whose instances
cannot be duplicated by an assignment operation. This
prevents a partition from acquiring a deep copy of a
remote object; if the object contains data whose se-
mantics are purely local (such as a regular pointer), it
would make no sense to move it from one partition to
another. Of course, the implementor of a type is free
to provide the programmer with a “copy” operation,
which will carefully copy all the fields of the object.

In spite of those limitations, all popular distributed ob-
jects constructs can be implemented on top of the Ada 95
model. For example, object migration can be easily
achieved by using a “deep copy” method and a redirection
object, that will redirect every method call made to the old
location of the object to the new copy, using the polymor-
phism properties of object references.

3. GLADE: distributed systemsfor GNAT

GLADE, our implementation of the Distributed Systems
Annex, provides a configuration tool (GNATDI ST) and a
partition communication subsystem (GARLI C) that can be
used to build a distributed application for a heterogeneous
or homogeneous set of machines [18]. Both are described
hereafter.

3.1. GNATDIST

The GNATDI ST tool, through its configuration lan-
guage, allows the programmer to partition his program and
to take advantage of the numerous extensions that we pro-
pose.

GNATDI ST reads a configuration file (whose syntax is
close to Ada 95), checks the consistency of the distributed
program and builds several executables, one for each parti-
tion. By default, it also takes care of launching the differ-
ent partitions with parameters that can be specific to each
partition. The principle of this tool is to ease the partition-
ing of the non-distributed application to build the distributed
application. One can also define and build partitions inde-
pendently from each other; this method is appropriate for
building client/server applications.

GNATDI ST takes care of generating the stubs and skele-
tons for units holding a categorization pragma. To create a
partition, GNATDI ST creates an executable which includes
the skeletons of the programmer units assigned to this par-
tition, the stubs needed by the transitive closure as well as
the communication subsystem. It also elaborates internal
GLADE services explicitly configured by the programmer.

3.2. GARLIC

GARLI Cis in some respects the ORB of the Distributed
Systems Annex (as shown on figure 1). It includes sev-
eral internal name and location servers. For instance, each
Remote_Call_Interface unit is registered in one of these
servers in order to resolve static references (as the COS?
Naming Service would do in CORBA).

Unit spec

g
Programmer code

oy

Unit body
~ Generated :
. Unit skeleton
Unit stubs | < > and bod
S y
s —=
SSao_ SystemRPC(PCS) __.-”

Figure 1. PCS viewed as an ORB

Although the Distributed Systems Annex does not re-
quire an Ada 95 compiler to work in a heterogeneous sys-
tem, GLADE has been especially designed to handle hetero-
geneity. Of course, the developer can switch off this fea-
ture at configuration time if he cannot afford the translation
overhead. For the same reason, the classical file operations
are still available in an heterogeneous system (the developer
can write an object in a file on a 64-bit machine and read it
on a 32-bit machine).

4. Extensionsto GLADE for real-time systems

GLADE over Ethernet is well-suited for soft real-time
systems only; unpredictable network performances make
it impossible to develop distributed hard real-time systems.
However, using GLADE on multiprocessor machines makes
it easy to develop hard real-time applications using dedi-
cated Ada constructs.

When developing the partition communication subsys-
tem, we have tried very hard to keep in mind the possible
real-time aspects of the user application. Let us consider
two cases.

1Common Object Services

4.1. Asynchronous transfer of control

Sample 5 shows a method call, Acti on (Cbj ect),
that is limited in time to 10 seconds. After that, if Acti on
has not returned, it gets aborted (the code between t hen
abort andend sel ect iscalled the abortable part) and
Action_Has_Fai | ed is executed.

procedur e SelectAbort i s
begi n
sel ect
del ay 10.0;
Action_Has_Fail ed;
then abort
Action (Qbject);
end sel ect;
end Sel ect Abort;

Sample 5. Using timed calls

When this code belongs to a distributed application, and
partition A calls Act i on on Cbj ect located on partition
B, the method call Acti on (Cbj ect) is a remote sub-
program call. If, for any reason, this method does not termi-
nate in 10 seconds, an asynchronous cancellation message
is sent from partition A to partition 5. Upon cancellation
message reception, partition B stops the job in progress, in
order to not consume useless processing power.

This construction can be used to switch computations
from one node to another when the first one is so saturated
that it cannot answer timely requests anymore. The code
shown on sample 6 illustrates this concept: if the method
call on Qbj ect 1 cannot be completed within 10 seconds,
the computation is aborted asynchronously using a control
message and a new computation is started on Qbj ect 2.

procedur e SelectObject i s
begi n
sel ect
del ay 10.0;
Action (Object2);
t hen abort
Action (Objectl);
end sel ect;
end Sel ect Obj ect;

Sample 6. Switching computation objects

4.2. Priority transmission

Each Ada partition has its own priority range. Each task
in a partition has a priority within this range; at any time, no
task is ever running if another task with a higher priority is
ready to run but not yet bound to a processor.

Partitions running on homogeneous architectures will
use the same priority ranges. However, an Ada distributed

system may be made of many computers, some of them be-
ing SPARC Stations, some of them being PCs running Win-
dows, and some others being embedded boards with a net-
work interface. Those different architectures will run differ-
ent Ada executives, with possibly different priority ranges.

The behavior on an incoming method call with respect to
the rest of the partition is not defined in the reference man-
ual. In GLADE, we have chosen to implement, optionally,
a mapping between the caller’s priority and the callee’s pri-
ority, the callee being the task which executes the code of
the incoming method. Figure 2 illustrates this: the priority
Priop is brought in the range [0..255], transmitted with the
remote method call over the network, then mapped into the
receiver’s priority range to become priority Priop:. Priop
and Priop: are at the same level relative to their respective
priority ranges. This concept is the same as the Real-Time
CORBA specification of mapping priorities between differ-
ent kinds of partitions.

Caller

Max,

~

~
~
~
~
~

~

Adaptor

-
-

-
-

Callee

Max,,:

255

Prio, \ / Prio,,
Prio

Min,, - >~ Max,

Figure 2. Interpartition priority mapping

4.3. Lightweight executive

The Distributed Systems Annex makes no difference be-
tween client and server partitions. However, it is common
to have partitions that do not offer any service; those par-
titions will not export locally created objects and will not
accept incoming remote calls.

A client only partition needs not be able to handle in-
coming messages but the answers to its own queries. In this
case, there is no need to embed a complex executive which
can deal with asynchronous requests. A simple “send then
listen” scheme, along with a primitive way of locating other
services is enough. Moreover, if the client only partition
does not use any tasking construct on its own, the data struc-
tures dedicated to distribution need not be protected against
concurrent accesses.

To reduce the memory footprint and CPU usage of those
client only partitions, GLADE offers a special lightweight

executive. The choice of the executive is made by the
binder, which is the part of the compilation chain that deals
with elaboration order and closure issues. As soon as the
partition does not publish any object and does not use any
tasking construct, the binder chooses the light run-time. If
one of those conditions is violated, the regular executive
will be included instead, offering the full power (and, unfor-
tunately, the full weight) of the Distributed Systems Annex.

4.4. Anonymous task pool

When multiple remote subprogram calls occur on the
same partition, they are handled by several anonymous
tasks. In a real-time context, it can be useful to control the
number of anonymous tasks created to handle remote calls.
These tasks can be allocated dynamically or re-used from
a pool of (preallocated) tasks. When a remote subprogram
call is completed, the anonymous task can be deallocated or
queued in a pool in order to be re-used for further remote
subprogram calls. The number of tasks in the anonymous
tasks pool can be configured by means of three independent
parameters.

The task pool minimum size indicates the minimum
number of existing anonymous tasks available for the com-
munication subsystem. Preallocating anonymous tasks can
be useful in real-time systems to prevent dynamic task allo-
cation.

The task pool high size is a ceiling. When a remote sub-
program call is completed, its anonymous task is deallo-
cated if the number of tasks already in the pool is greater
than the ceiling. If not, then the task is queued in the pool.

The task pool maximum size indicates the maximum
number of anonymous tasks in the communication subsys-
tem. In other words, it provides a way to limit the number
of remote calls in the partition. When a RPC request is re-
ceived, if the number of active remote calls is greater than
the task pool maximum size, then the request is kept pend-
ing until an anonymous task completes its own remote call
and becomes available.

A maximum task pool size of 1 will allow only one active
remote call at a time, thus enforcing serialization of incom-
ing calls. This makes the partition act as a task accepting a
remote rendez-vous request [6].

5. Extensions for surviving crashes
5.1. Fault-tolerant communications subsystem

When a partition starts its execution, one of the first elab-
oration steps is a registration with the boot partition which
includes the partition id (short for “identifier”) server and
with the Remote_Call_Interface name server.

The partition id server is used to allocate a unique par-
tition id when a new partition registers. It also replies to
information queries from other partitions. This informa-
tion includes the IP address, the port on which the partition
is waiting for requests and all its configuration parameters
(termination and reconnection policies, filters, ...).

The Remote_Call_Interface name server is used to regis-
ter newly elaborated Remote_Call_Interface packages. This
Remote_Call_Interface package registration occurs once
the partition has received its partition id. The partition reg-
isters its Remote_Call_Interface and Shared_Passive pack-
ages with their names, their version numbers and internal
information.

These two servers are located on a boot partition. In
some respects, GLADE has its own internal name servers
when CORBA requires the help of the programmer who is
supposed to register her well-known reference manually.

For fault-tolerance issues, it can be critical to prevent the
whole distributed system from blocking when the boot par-
tition maintaining those servers dies. The boot partition can
be replicated on boot mirrors, in order to prevent this par-
tition from being a single point of failure. A partition has
always to connect to the boot partition or to a boot mirror in
order to get minimal information about the other partitions.

The boot partition is the first boot mirror of the dis-
tributed system. A new partition declared as a boot mirror
joins the group of boot mirrors. The group of boot mirrors
operates as a token ring: any request from a new partition
to a boot mirror is sent on the ring using a token. A request
can go over the ring up to two times before being approved
by the whole set of boot mirrors.

When the boot partition dies, a new boot partition is
elected among the remaining boot mirrors. A boot partition
is responsible for the global termination detection. That is
why a new boot partition has to be elected.

This group is based on an internal token ring which
ensures that each member of the group can replace the
boot server partition when it dies. It can be compared to
a fault-tolerant COS Naming Service except that the pro-
grammer does not have to deal with it manually or imple-
ment fault-tolerant algorithms. Dedicated algorithms pre-
serve the global consistency of this group by taking care of
message loss detection and retransmission and by comput-
ing a consistent global state [10, 18].

5.2. Restarting a partition

On the one hand, a partition holding no Re-
mote_Call_Interface unit can be freely replicated in a dis-
tributed application. On the other hand, a partition with
Remote_Call_Interface packages cannot be present more
than once. If this partition was to be launched repeatedly,
it would not be possible to decide which instance should

handle an incoming remote call.

When a partition crashes or gets stopped, all the parti-
tions that knew about it mark this partition as dead. In some
cases, the developer may want to start an identical partition
that will offer the same services.

If configured with the Reject_On_Restart reconnection
policy, a dead partition is kept dead and any attempt to
restart it fails. Any remote call to a subprogram located
on this partition results in a system exception.

If configured with the Fail_Until_Restart reconnection
policy, a dead partition can be restarted. Any remote call
to a subprogram located on this partition results in a system
exception as long as this partition has not been restarted. As
soon as the partition is restarted, remote calls to this parti-
tion are executed normally.

If configured with the Wait_Until_Restart reconnection
policy, a dead partition can be restarted. Any remote call
to a subprogram located on this partition is kept pending
until the partition is restarted. As soon as the partition is
restarted, remote calls to this partition are executed nor-
mally. The suspended remote procedure calls to this par-
tition are resumed.

Note that with the last mechanism, the programmer may
have to handle a communication error anyway because the
server failure may occur in the middle of a remote invoca-
tion. The Communication Subsystem cannot afford to han-
dle the communication error in order to retry the invocation
later, because of the at most once semantics of a remote call
in Ada 95.

6. Work in progress

Some research and development works are currently un-
derway in two major directions: GLADE improvements ac-
cording to specified profiles (including hard real-time), and
GLADE improvements using ideas taken from the CORBA
world.

6.1. Profiles for Ada 95 distributed systems

To ensure that a real-time system meets its deadlines, the
programmer may want to check that the design and the im-
plementation of her application is feasible. To do so, re-
stricting the computational model can ease the job of the
developer. For this reason, Ada 95 allows to define profiles.
A profile is a simple subset of Ada 95 that ensures efficiency
and high integrity. Such a profile is checked at compilation
time by the compiler using restriction pragmas. Typically,
the programmer can forbid features with high overheads
(dynamic resolution of dispatching), forbid synchronization
features to simplify the tasking run-time system (small un-
derlying kernels) or forbid features that would prevent the

application from being deterministic, predictable and effi-
cient. Hard real-time working groups have defined such
profiles (such as the Ravenscar one [5]) and compiler ven-
dors already provide them.

These profiles do not address distribution issues. But
we are already thinking of some useful restrictions. For
example, a possibility would be to forbid synchronous re-
mote subprogram calls and to accept only asynchronous re-
mote calls. The execution time of a synchronous remote call
may not be predictable. For this reason, asynchronous re-
mote calls could be a better compromise and would provide
a higher level of functionality compared to bare message
passing. This restriction has to be introduced at the compi-
lation level.

6.2. Improvements coming from the CORBA world

We are actively looking at CORBA experience re-
turns in order to incorporate the best ideas of CORBA in
GLADE. Currently, we have identified three points where the
CORBA model would be a benefit to GLADE programmers:
general purpose or specialized services, dynamic invocation
and interaction with CORBA objects.

CORBA-like services

CORBA standardized services are an elegant way of of-
fering extra capabilities to the application developer with-
out encumbering CORBA itself with seldom used services.
Although the Ada standard contains several predefined li-
braries (e.g., for doing input/output services), there exist no
predefined service to be used in a distributed application.

We are in the process of porting the most useful CORBA
services to distributed Ada. At this time, we already
achieved the translation of the naming service and the event
service. We also chose a more powerful way of implement-
ing the concurrency service by a fully distributed mutual
exclusion service [11]. The next services on our port list
are the transaction and the lifecycle service.

Dynamic invocation

The CORBA standard defines a way of performing dy-
namic invocation on remote objects. This method consists
of building a method call by hand, by pushing all the ar-
guments in order to make a request. An additional ser-
vice, called the Interface Repository, allows an application
to query an object about its interface (this property is usu-
ally called reflexivity).

In Ada 95, reflexivity is achieved using ASIS? [9]: a le-
gal Ada compilation unit can be traversed, and syntactical
and semantical information can be obtained for every node

2Ada Semantic Interface Specification

seen. Using this standardized interface, it is possible to pro-
vide a remote node with the full description of an object
interface. We plan to utilize this capability through a yet-to-
be-defined API in order to build requests targeting an object
whose static and dynamic types are unknown at compilation
and link time.

This feature will ease the process of adding new services
in an ever running application without the need to stop any
partition. This would bring a hot upgrade framework, as the
one found in Erlang [1]: system downtimes would be lim-
ited to hardware maintenance or upgrades only. A software
upgrade would require no service interruption.

Addressing Ada objectsfrom CORBA

CORBA has been very successful in the last few years and
has been widely deployed. This leads to a situation where
it is much easier to provide a team with an IDL specifica-
tion than to convince them to convert their existing applica-
tion to distributed Ada. We have thus developed a software
called CIAQ? that automatically generates IDL specifica-
tions from a set of Ada specifications [14, 15, 16]. This tool
also builds an implementation corresponding to the IDL de-
scription without human intervention; this implementation
acts as a proxy object that transforms every CORBA method
call into Ada method calls.

7. Conclusion

Ada 95 was the first object-oriented language to be in-
ternationally standardized. The real-time features already
found in Ada 83 have been nicely integrated with the ob-
ject model and with the new concurrency constructs such as
protected objects. Moreover, distribution capabilities have
been included in the standard, and let a developer build dis-
tributed applications painlessly.

Many people were skeptic regarding the integration of
those three major features. However, our implementation
has shown that they mix very well, and that using Ada for
developing large real-time object-oriented distributed sys-
tems leads to very elegant and straightforward solutions.

We have taken advantage of the freedom offered by the
Distributed Systems Annex to add powerful extensions to
the basic distribution model. Those extensions are either
focused on pure Ada real-time systems or on interoperabil-
ity with other object-oriented distributed systems such as
CORBA.

SCORBA Interface for Ada Objects

References

[1] J. Armstrong, M. Williams, and R. Virding. Concurrent Pro-
gramming in Erlang. Prentice-Hall, Englewood Cliffs, NJ,
1993.

[2] S. Barbey, M. Kempe, and A. Strohmeier. Object-oriented
programming with Ada 9X. In OOPSLA’93, Washington
DC, USA, September 26 - October 1 1993, number 18 in
Tutorial Notes. ACM Press, 1993.

[3] A. Birrell and B. Nelson. Implementing remote procedure
call. ACM Transactions on Computer Systems, 2(1):39-59,
february 1984.

[4] P. Brinch Hansen. Structured multiprogramming. Commu-
nications of the ACM, 15(7):574-578, July 1972.

[5] B. Dobbing and A. Burns. The Ravenscar tasking profile
for high-integrity real-time programs. ACM SIGADA Ada
Letters, 18(6):1-6, Nov./Dec. 1998.

[6] N. D. Gammage, R. F. Kamel, and L. M. Casey. Remote
rendezvous. Software Practice and Experience, 17(10):741-
755, Oct. 1987.

[7] C. A. R. Hoare. Monitors: An operating system structur-
ing concept. Communications of the ACM, 17(10):549-557,
Oct. 1974. Erratum in Communications of the ACM, \ol. 18,
No. 2 (February), p. 95, 1975. This paper contains one of the
first solutions to the Dining Philosophers problem.

[8] I. Intermetrics. Ada 95 — Reference Manual, 1995.

[9] 1SO. Information Technology — Programming Languages —
Ada Semantic Interface Specification (ASIS). 1SO, 1998.

[10] G. Le Lann. Algorithms for distributed data sharing sys-
tems with use tickets. In Proceedings of the 3rd Berkeley
workshopon Distributed Data Management and Computer
Networks, pages 259-272, August 1978.

[11] K. Liand P.R. Hudak. Memory coherence in shared virtual
memory systems. In Proceedings of the 5th Annual ACM
Symposium on Principles of Distributed Computing, pages
229-239, New York, NY, 1986. ACM.

[12] S. Microsystems. RMI — Documentation.

[13] Object Management Group. The Common Object Request
Broker: Architecture and Specification, revision 2.2. Febru-
ary 1998. OMG Technical Document formal/98-07-01.

[14] L. Pautet, T. Quinot, and S. Tardieu. CORBA & DSA: Di-
vorce or Marriage? In Proceedings of AdaEurope’99, San-
tander, Spain, June 1999.

[15] T. Quinot. Mapping the Ada 95 Distributed Systems An-
nex to OMG IDL — Mapping definition. Technical report,
ENST Paris and university Paris VI, May 1999.

[16] T. Quinot. Mapping the Ada 95 Distributed Systems Annex
to OMG IDL — Specification and implementation. Master’s
thesis, ENST Paris, May 1999.

[17] A. Strohmeier, S. Barbey, and M. Kempe. Object-oriented
programming and reuse in Ada 9X. In Tutorials of Tri-
Ada’93, volume 2, pages 945-984, Seattle, Washington,
USA, September 1993.

[18] S. Tardieu. GLADE — Une implémentation de I’annexe des
systémes répartis d’Ada 95. PhD thesis, Ecole Nationale
Supérieure des Télécommunications, Oct. 1999.

