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ABSTRACT
This paper presents our experience in using Ada and the
Ravenscar profile in a robotics non-profit association and in
a robotics competition. While Ada is our primary and dom-
inant language, we have complemented it with a hardware
description language (Verilog) and an interactive language
(Forth). We describe the interface between those languages,
and the design choices that have been made to minimize the
risks taken by leaving the Ada world. We also explain why
we chose in some conditions to relax restrictions imposed by
the use of the Ravenscar profile.

Categories and Subject Descriptors: D.3.2 [Program-
ming Languages]: Language Classifications; D.4.7 [Operat-
ing Systems]: Organization and Design—real-time systems
and embedded systems, interactive systems; D.2.11 [Soft-
warer Engineering]: Software Architectures—languages (e.g.,
description, interconnection, definition).

General Terms: Design, Languages.

Keywords: Robotics, FPGA, Ravenscar high integrity pro-
file, Ada streams, hardware interface.

1. INTRODUCTION
Telecom Robotics is a non-profit organization founded in

2004 by passionate teachers, master students, and former
students (now engineers) of the French Télécom ParisTech
engineering school. Their common goal is to disseminate
their knowledge and experience about robotics while them-
selves going on playing with robots.

To motivate people, the organization participates in the
French robotics cup: every year, around 200 teams from
France and nearby European countries gather in a small
town and have to fight against each others in a tournament.
Robots must be totally autonomous, and once the 90 seconds
match has started, no interaction may take place between a
robot and its team.

The rules change every year, from golf play to small build-
ing constructions from various pieces available around the
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contest table. Robots are not allowed to destroy each other
during the one-to-one match and must implement reliable
collision avoidance.

Shortly after our organization was created, it became ob-
vious that some strategic choices needed to be made in order
not to spread the work force between too many programming
languages. Autonomous robots are inherently parallel, since
they must at the same time work towards a goal and react
to external events. Complex computations may need to be
run in the background while the robot is moving or build-
ing structures, and asynchronous events such as a probable
future collision must be promptly acknowledged and acted
upon.

We have been using Ada at Télécom ParisTech for more
than 15 years, both in teaching activities and research pro-
jects, including robotics related ones[6]. Other people also
use Ada with great success in robotics projects or courses[9].
We approached AdaCore, a long-time partner of our insti-
tute, and they immediately offered to provide us with tech-
nical and financial assistance. At this time, some members
who had never been exposed to Ada were reluctant to use
this language perceived to be old-fashioned and extremely
rigid, but others were able to convince them to at least try
it before dismissing it.

Moreover, Télécom ParisTech had previously designed and
built custom boards based around a Hitachi SH4 processor
and a Altera Stratix FPGA (field-programmable gate array,
a reprogrammable electronic component) for an unrelated
research project. The boards, whose global architecture is
shown in figure 1, could run a variant of the GNU/Linux
operating system, an environment that most people were al-
ready familiar with. The GNAT Ada compiler maintained
by AdaCore was already available for several Linux-based
platforms, so it seemed to be a good potential combination.

This paper is articulated around the use of those boards
in our robotics projects. After a short presentation of our
development environment in section 2, we show how our Ada
code has been organized and structured, as well as an exam-
ple of how the robot is able to locate itself and its opponent
in the game area (section 3). Then in section 4 we explain
how we have used the Verilog hardware description language
to offload some processing into the FPGA and interface it
with Ada.

Workload distribution among several boards and commu-
nication strategies are detailed in section 5. Before conclud-
ing, we explain how we added interactive testing capabilities,
and why we chose to relax some restrictions brought by the
Ravenscar profile while on the field in section 6.
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Figure 1: Board hardware architecture

2. DEVELOPMENT ENVIRONMENT
The first step was to port GNAT to the SH4 architecture

running the GNU/Linux operating system. Unsurprisingly,
this went very well and the port was completed and tested
within a few days. The GCC back-end already knew how to
generate assembly code for the SH4 architecture, and Linux
targets are very similar to one another. This new GNAT
port has since been integrated into the upstream GCC de-
velopment tree and is now available in the recent GCC re-
leases.

The next step was to select the most efficient way to teach
Ada to newcomers or to members who had not taken any
Ada classes during their studies. Since heavy parallelism
was required and many people would be involved in devel-
oping co-dependent modules, we chose to restrict ourselves
to the Ravenscar profile[3] while forbidding the use of dy-
namic heap allocation. We thought it would encourage good
practices, such as:

• communication between tasks happen solely through
protected objects, dramatically reducing the chance of
a deadlock;

• protected objects may have a maximum of one entry,
preventing them from being bloated with several func-
tionalities;

• entry guards are limited to simple boolean tests, forc-
ing developers to think about the best information
to store in the private part of each protected object,
and preventing them from synthesizing this informa-
tion from more complex data;

• forbidding dynamic allocations clearly shows at link
time what amount of memory will be needed at run
time, encouraging developers to spare this scarce re-
source (32MB of RAM in our case).

Most software modules also need to work on regular com-
puters. Since the robotics cup challenge changes every year,
several months are necessary before we get a working me-
chanical platform. Algorithms need to be tested, as do

the interactions between the modules. We turn on a large
number of compiler warnings, and the code base must be
warning-free on every platform. Some packages have been
developed to simulate the robot behavior, and the use of
GNAT project files allows each developer to compile the
code either for the simulator using a native compiler or for
the robot using the SH4 Ada cross-compiler.

The last constraint we decided on was to never exchange
code directly between developers without going through the
source code management system. We have settled on Mercu-
rial, which is a fully distributed revision control system[18].
This has the advantage of letting developers commit their
code locally first, with access to the full history, then syn-
chronize the local repository with the central one. Also,
while on the contest site, setting up a new central server on
any of the developers’ laptop is painless and can be done in
no time.

3. PROGRAM ARCHITECTURE
As shown in figure 2, the code has been organized into

well-isolated layers. This logical separation helped us reuse
a maximum of code year after year. For example, the propul-
sion and guidance system is likely to always expose the same
principles, even if we choose different wheels or encoders; its
high-level interface provided by the devices interaction li-
brary will not change, unless we implement a totally new
way of moving the robot, e.g., by specifying Bezier curves
control points instead of a succession of arcs.
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Figure 2: Robot code architecture and languages

3.1 Devices interaction library
The devices interaction library is in charge of providing

the application programmer with high-level views of the var-
ious peripherals that can be used by the robot during the
competition. For example, it may offer to set a robotic arm
in a given position using a single subprogram call, while
internally decomposing this operation into numerous sub-
moves determined by complex inverse kinematics equations.

This layer exposes only a non-blocking interface to the ap-
plication code. If an operation cannot be performed instan-
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Figure 3: Communication through protected objects

taneously, it will be backgrounded using a dedicated task,
and the caller will be able to later check the operation status
if needed.

The devices interaction library uses the underlying hard-
ware interface layer. This layer offers an access to the robot
peripherals (detailed in section 4) and to the operating sys-
tem services such as the file system and the network. During
the development phase, an algorithm can be tested on a de-
veloper’s machine by replacing the hardware interface by a
hardware simulation environment.

3.2 Application code
As expected, the organization of the application code has

been strongly influenced by the use of the Ravenscar profile.
The robot intelligence has been split into non-terminating
periodic tasks communicating through protected objects.

A simplified example of such communication is given in
figure 3. The Localization task uses the odometer and bea-
cons data to compute the current robot position and stores it
into a protected object. Its inputs are themselves computed
by other tasks, the Engine control and Beacons communi-
cation tasks, respectively.

You may notice that the Localization task does not need
to read the current match state. Indeed, localization com-
putations are always performed, independently of the match
phase (preparation, match in progress, match terminated).
However, a result will be made available to other entities
only if the inputs are fresh enough to determine a credible
robot position.

3.3 The state manager
Since all tasks are started during the elaboration and

never terminate, they must know what state the robot is
in before performing their duties. For example, there is no
need to detect a possible collision with the other robot after
the end of the match. Moreover, moving to avoid a collision
once the match is officially over would provoke an immedi-
ate disqualification. Every task checks the current program

state before acting, while a state manager takes care of up-
dating it when needed (when the start switch is toggled,
when a fatal error is reported, when the match duration has
elapsed, etc.).

The competition rules are strict: once both teams have
been called to the match table, a color (blue or red) is ran-
domly assigned to each robot. The teams have a couple of
minutes to install and configure their robot. Engines are
allowed to be turned on if needed, switches may be toggled
(e.g., to tell the robot which color the pieces it should be
seeking on the table will be) and computers may be con-
nected, to launch the main program for example. Also,
a mandatory starter string is installed on each robot: the
string will be pulled to indicate the beginning of the match.
This corresponds to the Testing state in figure 4.

After a referee notice, the teams are no longer allowed
to touch the robots. Our robot enters the Startup state
and immediately uses one of its video cameras to take a
picture of the empty table and stores it for later use. A card
is then randomly picked up from a deck containing all the
possible match area configurations, and the game elements
are accordingly placed onto the match table.

After a countdown, the match starts. Both team leaders
must launch their robot by pulling on the starter string from
a distance. We use a magnetic sensor to detect this action;
once the magnet placed at the end of the string gets off the
sensor, our robot enters the In round state and takes another
picture of the match area. By comparing this picture and
the previously stored one, it can easily and quickly determine
the match configuration that has been installed.

Once 90 seconds have elapsed, the robots must stop and
stay still; a moving robot would be immediately disqualified.
Our robot enters the Stopped state, and can later optionally
enter the Vacuuming state for a few seconds if asked to do
so, a state in which it will release any game elements it still
holds. This operation can be repeated if needed until all the
items have been freed.
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At any moment, any module may decide to put the robot
into the Fatal error state. In this state, the robot will refuse
to move any of its engines, which will be put in freewheel
mode if possible. In particular, each robot must be equipped
with a mandatory big red push button in case of emergency:
in our code, a high priority periodic task checks the button
and puts the robot in the Fatal error state when pushed,
which is enough to prevent any harmful move.

3.4 Infrared localization system
According to the contest rules, collision avoidance is a

strong requirement. A robot causing any damage to its op-
ponent during a match may be disqualified.

In order to locate the other team’s robot as well as ours,
we use a triangulation algorithm with data obtained from
beacons located at known positions on the match area[13].
Figure 5 illustrates it: on the match table (seen from above),
B1, B2 and B3 are our three fixed beacons, while R1 and
R2 are the robots.

R2

B1

B2

B3

R1

Figure 5: Robot localization using triangulation

Before the match, we place a small electronic device that
we designed on top of each robot, as allowed by the con-
test rules. If the other team do not allow us to do so or
chose not to build the mandatory pole and platform, they
automatically loose the match by default. Each device con-
tains a small battery powered processor, along with a Zigbee
low-power wireless communication device[12] and a omni-
directional infrared emitter.

The three beacons are driven by similar electronic boards
equipped with an infrared receiver mounted on a servo mo-
tor. They also communicate with our robot using Zigbee.

Our main program, also connected to a Zigbee device, di-
rects one of the two emitters placed on top of the robots
to continuously send modulated infrared signals until fur-
ther notice. The signal is encoded in order to be able to
distinguish it from the background infrared noise caused by
other contestants and by the powerful lights of the television
crews.

Each fixed beacon rotates its infrared receiver until it rec-
ognizes a proper signal. When it does, it sends its current
servo motor angle to our main program through a Zigbee
message. If we receive data from two beacons or more in
a short time span, we can compute the possible position
of the tracked mobile. In figure 5, the darkest area below
the R1 circle shows the computed possible positions when
information coming from the three beacons is used.

Note that if the other robot obstructs the path between
the emitter and one of the receivers as illustrated in figure 6,
the position can still be computed unless the tracked mobile
is located near the straight line going through the beacons.
Of course, the precision will be decreased accordingly, as
clearly shown by the greater surface of the dark area.
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Figure 6: Obstacle in the way

Using this technique, we can locate either robot most of
the time. The result is not very accurate, but is useful
enough to avoid collisions with the other robot, and the er-
rors do not accumulate over time. To locate our own robot,
our odometer-based strategy proved much more precise; the
relatively short match duration (90 seconds) does not allow
the drift to become significant.

On our robot, the communication with the Zigbee device
is done through a custom board built around a STM32 ARM
processor running FreeRTOS[2]. This board, which also pro-
vides the robot with a LCD display used during the tests, is
connected through a RS232 serial link implemented in the
FPGA and driven directly from the Ada program address



space. In order to be able to easily extend the various mes-
sages exchanged between our main program and the STM32
board, a callback-based interface with registration capabili-
ties is used.

4. HARDWARE CONTROL FROM ADA
Since the main CPU used in our robot does not have many

available general purpose communication ports, external de-
vices are physically connected to the FPGA which is, in
turn, connected to the SH4 CPU using a regular memory
bus interface. The FPGA appears to the SH4 as an ex-
ternal memory, and is controlled through regular read and
write operations. The FPGA can also asynchronously sig-
nal events to the CPU (such as the completion of a long
operation) by using dedicated interrupt lines.

Since unfortunately the FPGA itself has a limited number
of general purpose inputs and outputs, slower devices are ac-
cessed through an IO expander chip connected to the FPGA
by way of a serial peripheral interface (SPI) bus. This ar-
chitecture is close to the one found on traditional computer
motherboards: the FPGA plays the role of the northbridge,
while the IO expander plays the role of the southbridge[16].

Every device connected to the FPGA is controlled through
a few consecutive memory addresses mapped into the SH4
memory space. The FPGA recognizes accesses to those areas
and acts accordingly by directing the read or write request
to the appropriate hardware control submodule.

4.1 FPGA programming and Verilog
The FPGA located on our boards allows many hardware

operations to take place in parallel; it is configured using the
Verilog hardware description language[22]. Verilog, which is
based on a C-like syntax, can be used to describe a hard-
ware digital system as simple as a flip-flop or as complex
as a microprocessor. It can represent either the structural
(how it is built) or the behavioral (what it does) view of
the described component. It is then possible to simulate the
system, and to generate log files representing test results for
behavior analysis and conformance verification. The com-
ponent can also be synthesized from its Verilog description;
the resulting netlist, corresponding to the physical descrip-
tion of the described hardware based on elementary logic
gates, can be used to manufacture a chip, or, as is the case
here, to program a FPGA.

A Verilog description uses a collection of modules similar
to Ada generic packages. They have zero or more inputs,
and zero or more outputs. Verilog modules need to be in-
stantiated: their inputs and outputs are connected either to
other instances, or to external circuit pads. It is common for
modules to take a clock line as one of its inputs. This way,
they can work synchronously on clock transition edges. In
our case, we provide our modules with a 60MHz clock line
derived from the 240MHz SH4 clock.

In order to interact with the outside world, we have de-
scribed a memory bus in Verilog. All the modules in our
FPGA in charge of a device are connected to this bus, as
well as to the peripheral they control. Each module also
takes a bus enable signal as input; another module, called
a bus decoder, decodes the address given by the external
component acting as a bus master (in our case the SH4 pro-
cessor) and sets the bus enable of exactly one module if the
bus read or write command is intended for this module. The
module can then perform the requested operation and, de-

pending on the direction of the command, look at or set the
bus data lines, as illustrated in figure 7.
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Figure 7: Multiplexing modules in the FPGA

Adding a new peripheral to the FPGA is easy: a new mod-
ule is added to the system, and one more case is added into
the bus decoder. Modules can have their own internal mem-
ory, although FPGA memory is a scarce resource. If they
need more, they can also use an external RAM connected to
the FPGA through an arbiter module; for example, a fast
video RAM is made available to video-processing operations.

4.2 Interfacing the FPGA with Ada
The traditional way to interface an external device with

user-land (as opposed to kernel-land) processes consists into
writing a device driver[5] for the underlying operating sys-
tem, and using the device driver from the desired program-
ming language. The operating system is in charge of allow-
ing or forbidding a process to access the device driver, while
the driver itself must handle concurrency issues when mul-
tiple processes or threads attempt to issue commands to a
device at the same time.

However, we chose to bypass this OS-centric view illus-
trated in figure 8 to adopt an Ada-centric view instead: since
our devices are to be accessed only by an Ada program, writ-
ing the access and control protocol directly in Ada gives us
more flexibility than writing a Linux device driver and an
Ada interface to this device driver. Also, handling concur-
rent accesses using regular Ada concurrency tools such as
protected objects and tasks lets us integrate parallel accesses
to the device into the global Ravenscar-compliant schedul-
ing.

FPGA SH4/Linux

Device Ada program

Mem. interface Phys. mem.

Driver interface

Driver

System calls

Bus

Control lines

Figure 8: Using a traditional device driver



A minimalist Linux device driver allows the Ada program
to map the physical FPGA address space into its own pro-
cess virtual address space (using the mmap system call), as
illustrated in figure 9. This mapping is obtained at elabora-
tion time, and its base address is used in subsequent address
representation clauses to exchange commands and data with
the various devices.

FPGA SH4/Linux

Device Ada program

Mem. interface Phys. mem.

Proc. mem.

Bus

MappingControl lines

Figure 9: Implementing device control in Ada

Then each linked-in Ada interface package checks that the
device it is in charge of is indeed supported by the current
FPGA configuration by checking a device “magic number”
and version information obtained from the FPGA. If any-
thing goes wrong, the program aborts before finishing its
elaboration.

In addition to giving us more control over the schedul-
ing of concurrent accesses, this scheme brings us two other
benefits:

• Context switches between the kernel and a process
are very costly compared to regular memory read and
write operations. Once the mapping between the phys-
ical address space and the virtual Ada process space
has been established, no extra system call is needed
to access the device as the address translations will be
performed in hardware by the SH4 memory manage-
ment unit (MMU).

• Communications between the Verilog developer for the
FPGA and the Ada developer for the SH4 do not need
to get through an extra layer, namely the Linux kernel
driver developer. This is a very sensible topic during
development sprints, where developers work together
by experimenting various hardware/software splitting
configurations.

Using this technique, we also moved parts of the propul-
sion control system into the FPGA, freeing the Ada program
from the burden of counting the odometers ticks. Now, the
main program directs the hardware to advance up to its tar-
get and gets immediate feedback about the current progress
using a memory-mapped variable.

Also, rather than controlling the SPI interface from Ada
to access the devices located behind the IO expander (see
figure 1), we added custom Verilog modules into the FPGA
to do the encoding and decoding of the information provided
by the various devices transparently. The peripherals are
presented as if they were directly connected to the FPGA,
and they can be controlled from Ada as easily as any other
device in the robot.

We have recently started developing a new tool to de-
scribe a device interface between the FPGA and the Ada
world. This tool generates both the Ada hardware interface
packages (declaration and body), and the Verilog module in-
terface corresponding to this device. This will save us from
writing many representation clauses to indicate which bit at
which memory-mapped address corresponds to which hard-
ware flag. Also, magic and version numbers consistency is
automatically verified at elaboration time by the generated
code.

5. THE NEED FOR PARTITIONING
Our initial idea was to use simple devices as inputs to

the system, such as infrared telemeters, color sensors or
bumpers. After a few weeks, the participants had written
all the necessary modules as well as some core algorithms
necessary for the robot to act on those sensors.

5.1 Early results
As teachers, we were very impressed with the outcomes

of using Ravenscar as an Ada teaching tool: the restrictions
brought by the profile actually made Ada easier to learn
than with the full unrestricted language. The lack of asyn-
chronous transfer of control or task termination led to a lot
of small and clean periodic tasks, allowing developers to eas-
ily compute the expected response time in most situations.

More surprising to us was the fact that those restrictions
forced the developers to separate functionalities into very
independent modules. Adding a new functionality as an
extension of an existing (and maybe unrelated) one would
violate Ravenscar rules such as having a maximum of one
task waiting on an entry queue at any given time.

Since everything was going so well, we became more am-
bitious and decided to use more complex sensors such as a
video cameras. A physical interface for a tiny CCD camera
was designed and built, and some Ada packages were writ-
ten to detect shapes and colors in the image. Then a second
video camera was added to the board. It became obvious
that more cameras would lead to better environmental anal-
ysis, and we decided to use two main boards instead of one
to double the processing power and the memory capacity.

5.2 Distributing the program
The communication between the boards had to satisfy a

number of constraints:

1. Exchanging data between Ada programs running on
both boards has to be easy and to preserve strong typ-
ing. Also, being able to replace one of the boards by
the same program running on a developer’s machine
would be very useful during development.

2. Data exchanged between the boards will be composed
of small real-time information about individual video
frames or recent sensor readings. If a transmission er-
ror occurs, we would rather loose one piece of informa-
tion rather than congest the link with retransmissions
of outdated and useless data.

3. Although we need the link to be fast in order to get
timely data, we do not want it to flood the main CPU
with interrupts; however, we want to be told immedi-
ately when new data can be processed.



Constraint 1 made us use Ada streams. Although we have
not been needing it in practice because x86 and SH4 proces-
sors share the same endianness and word size, we knew that
cross-platform stream attributes were available in GNAT by
replacing the System.Stream_Attributes package with the
one coming with GLADE, GNAT’s implementation of the
Distributed Systems Annex[19].

Because of constraints 1 and 2, we chose UDP as the trans-
port layer. Using IP ensures interoperability with the devel-
opers’ computers, and UDP offers a packet-based mechanism
without retransmission.

Constraints 2 and 3 made us develop a custom high-speed
full-duplex synchronous serial link protocol called twonet on
which PPP (point-to-point protocol) could be run to provide
IP and UDP communication. This serial link can transmit
data in both directions with speeds up to 15Mb/s, although
we are currently using it at 1Mb/s. Also, twonet is packet-
based, and will signal an interrupt to the main CPU only
when a full packet (up to 256 bytes) has been correctly re-
ceived and is ready to be retrieved. The overhead has been
kept low at 3 bits per packet, so that the link can sustain a
99, 86% efficiency rate at full load. Two send buffers and two
receive buffers in each direction ensure that packets can be
sent back to back, since a packet can be prepared while the
previous one is still being transmitted, and a received packet
can be processed while the next one is being received.

We considered using the Distributed Systems Annex for
high-level communications between the boards, but the im-
plementations available for our version of GNAT were either
not Ravenscar compatible or much too heavy for our limited
environment. Instead we chose to implement a new stream
type, inherited from Ada.Streams.Root_Stream_Type, aug-
mented with a Flush operation. This lets us send whole
data blocks once they are ready; symmetrically, if a packet
is received by the other board, it knows that the packet is
complete, correct, and ready to be processed. Also, we check
the size of the outgoing data at flush time to ensure that it
will fit into a twonet packet even after the subsequent UDP,
IP and PPP encapsulations.

From a language point of view, only a single record type is
ever used in each direction. But thanks to Ada discriminated
records, this type can contain many different kind of data
while preserving strong typing capabilities.

The choice of an IP based protocol makes it easy for a de-
veloper to interact with the embedded boards using a WiFi
USB dongle. Moreover, by keying in the adequate routing
table information, one board may act as a gateway (through
PPP over the twonet serial link) for the other, thus allowing
a single WiFi interface to be used to access both boards.
Figure 10 summarizes the various layers used for communi-
cation.

5.3 Offloading costly operations
Four cameras require a lot of operations to process in-

coming data in real-time. To decrease the CPU load and the
memory bandwidth, we decided to offload some picture anal-
ysis functionalities into the FPGA located on each board.

5.3.1 Hardware real-time image processing
The first image processing operation implemented in the

FPGA is a picture down-sampling. The algorithms we use to
locate key points or objects on the battlefield could not ac-
commodate the original camera resolution. This step could
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Figure 10: Protocol stack

easily be implemented in software, but it would require a
lot of memory accesses to retrieve the image and store the
down-sampled result. Doing it in the FPGA allows us to
do it on the fly as individual pixels are sent by the video
cameras, without ever storing the original pictures into the
memory.

The second hardware-backed operation consists into tag-
ging each pixel with its appropriate color within a predefined
reduced set (e.g., red, green, blue, yellow, black, and white).
While this may look like an easy task, this information can-
not be obtained in a reliable way from the pixel hue and
saturation values alone. The use of cheap video cameras
and the presence of different lightning environments make it
a complex operation requiring a manual calibration.

To calibrate the pixel tagging system, the cameras take
various pictures of the match environment. Those pictures
are tagged using a dedicated program by a human operator:
significant color areas are drawn using a mouse and identi-
fied. From this data, the program computes the best shapes
corresponding to each identified color in a three-dimensional
color space. The result is then uploaded into the FPGA ev-
ery time the system starts, and each pixel is analyzed on the
fly right after the down-sampling process. The resulting im-
age is mapped directly into the Ada process space; reading
a pixel value is as simple as getting an element from a global
array.

For each video input, both image processing operations
can be individually turned on or off depending on the needs.
Other hardware algorithms such as straight lines detection
using Hough transforms[17] have also been implemented and
have been used in the past to help localize the robot using
checker patterns drawn on the match table. Nowadays, our
current localization system based on odometers and fixed
position beacons is precise enough and requires less process-
ing power and FPGA cell space.

5.3.2 Video overlay
Although video-related algorithms are first experimented

on the developers’ machine using test pictures, it is often
useful to see how the algorithms behave on the real platform.
In order to do so, we have added a video output interface
to our boards. A PAL (European TV standard) composite
signal is generated by the FPGA by combining the camera
inputs and an overlay buffer.



This memory mapped overlay buffer is accessible from
Ada and allows the main program to draw shapes on the
screen on top of the acquired pictures. For example, it can
be used to display the pixel colors computed by the pixel
tagging system, to draw a line around the identified objects,
or to display the path the robot plans to follow to reach its
next key position.

As can be seen in figure 1, an additional memory is directly
connected to the FPGA and is used to store both raw and
processed pictures. Using the video output does not put any
additional pressure on the SH4 memory bus since it is only
used to transmit overlay drawings.

Additionally, it would be possible to add text on the screen
by embedding some character fonts in the FPGA, or to in-
tegrate a general purpose shape drawing hardware library.
However, we have not encountered such a need yet.

6. ON THE FIELD
During the year preceding the robotics cup, every team

builds an environment similar to the one that will be used
during the contest. This usually consists into a 2m×3m
table equipped with various equipment and other game ele-
ments. Building the exact environment with the right mate-
rials would be very costly; wood and aluminum substitutes
are frequently used instead. As a consequence, sensors cal-
ibrated in this environment will probably not work out of
the box on the contest site and will need to be recalibrated.

For example, optical presence sensors may be affected by
the difference in materials reflexivity, or by the extreme
brightness caused by the lights of the television crews. Grip-
pers may need to handle objects more firmly or more gently,
or to pick them up from a slightly different angle. The first
hours spent on the contest site are used by the teams to ad-
just their devices and make sure they function as expected
in the final environment. Also, each team looks carefully
at other robots and tries to guess and study their varopis
strategies. For those reasons, we needed to be able to effi-
ciently test existing features and add new ones in no time
while on the field.

6.1 Interactive robot manipulation in Forth
When a new peripheral is added to the system, or when a

new strategy is designed, it may be useful to be able to in-
teractively test them with various parameters without mod-
ifying, rebuilding and rerunning the whole program. For
this reason, we wanted to add an interpreter which would
let us call various subprograms and manipulate their input
and output values.

Forth is an interactive stack-based language with a very
simple syntax[21], which can easily be extended into a domain-
specific language (DSL). Forth is commonly used in robotics
because of its conciseness, its small footprint[11, 10, 8], and
its extensibility. The interpreter lets you define new words
(the Forth name for subprograms) that can be used imme-
diately after their definition and are indistinguishable from
predefined words. If needed, user-defined subprograms can
even assume total control over the parser and create a whole
new syntax.

Reusing a well-known and modular language was more at-
tractive than writing a specialized DSL interpreter[14] which
would need to be modified continuously to accomodate the
robot changes. This is why we chose to implement a Forth
interpreter in Ada. We briefly considered reusing one of the

many portable Forth interpreters[7], but those are usually
written in C. We did not want to add yet another interface
to maintain.

Forth uses a reverse Polish notation: words in the input
lines are executed from left to right, and any non-existing
token is assumed to be a number, parsed, and put onto the
data stack. For example, the expression “17 5 - 10 *” will
let 120 on the stack: 17 and 5 are put onto the stack, “-”
takes two numbers from the stack, subtract them and put
the result (12) on the stack, 10 is put on the stack, “*” takes
two numbers from the stack, multiply them, and put the
result on the stack.

The Forth interpreter is linked with the main Ada pro-
gram and interacts with the robot devices. For example,
closing the first of the two grippers can be performed by
entering the “1 close-gripper” sentence interactively. The
interpreter is compatible with the Ravenscar profile and uses
a well-defined interface to call Ada subprograms, which are
seen as primitives of the Forth kernel. It is also possible to
manipulate the Forth stack from the Ada side, to extract
arguments to pass to subprograms or to put results back.

Let us assume that to grab an object lying on the game
area the robot needs to first open the gripper, then go for-
ward so that the object enters the gripper, then close the
gripper to pick up the object. We want to test interactively
by how much the robot should move to get the best result.
In order to avoid tedious repetitions, we can interactively de-
fine a new “pickup” word which will take a gripper number
and a distance:

: pickup tuck open-gripper forward close-gripper ;

We can now test whether a 35 millimeters forward move
works for the first gripper by issuing the“35 1 pickup”com-
mand (see figure 11 for an explanation of how it works inter-
nally). If it is obviously not enough, we can then attempt a
40 millimeters move with “40 1 pickup”, then try with the
second gripper with “40 2 pickup”. With a single line (the
“pickup” word definition), we have extended the domain-
specific language with a new functionality.

6.2 Relaxation of Ravenscar restrictions
As teams study each others strategies, being able to adapt

the robot behavior in a very short time is a crucial ad-
vantage. The contest lasts three days and two nights, and
each team may have as little as one hour between successive
rounds to design, code and test a new strategy.

This year, for the first time, we chose to relax the Raven-
scar profile restrictions while on the field: new strategies
could be written using the full Ada language, but the lower
code layers could not be changed. Should a bug be discov-
ered in the core routines, the fix would have to compile with
the full Ravenscar restrictions set.

Relaxing those restrictions was not an easy decision to
make, as it sacrifices the integrity of some parts of the soft-
ware to obtain faster results. Afterwards, we are happy with
this choice that proved very useful in practice; we were able
to adapt to the next opponent supposed strategy between
the rounds. The “select ... then abort” construct was
used to try a strategy and immediately fall back to another
one if the first one was not working or became inefficient
because of an opponent unexpected move.

Many of constructs forbidden by Ravenscar, such as time-
outs, may be implemented differently while using Raven-
scar[4]. However, the time needed for doing so would have



. . .

35

1

Top of stack

. . .

1

35

1

Top of stack

. . .

1

35

Top of stack

. . .

1

Top of stack

. . .

Top of stack

tuck open-gripper forward close-gripper

Figure 11: The inner working of “35 1 pickup”

prevented us from working on urgent strategy changes that
could not be done without looking at the other teams be-
havior first.

7. CONCLUSION AND FUTURE WORK
The first conclusion is that our current languages com-

bination works well for this kind of task, as our rank gets
better every year. In 2009, about 200 teams have entered
the competition, and we ended up in the 9th position. The
points we lost during the matches were not due to faulty
software; our lack of mechanical skills is badly showing, and
we lost one decisive match because of a last-minute gripper
mechanical problem which could not be fixed by the software
alone.

Also, nobody in our organization seriously talks about re-
placing Ada by anything else. Using the Ravenscar profile
during the whole development phase leads to very clean and
well-defined software modules, some of them being reused
painlessly year after year. For the last two years, we have
not taught a single Ada class to newcomers; they learn Ada
casually from old-timers as they go, and end up after one
year of coding with very solid Ada skills. Most newcom-
ers are freshmen, and this experience makes them choose
Ada classes during their stay at Télécom ParisTech in order
to reinforce their theoretical Ada knowledge and see other
aspects of the language.

We try as much as possible to use Free Software solutions,
so that the organization members can easily duplicate our
setup either at home or in other organizations. We have
contributed back the GNAT port for Linux on SH4 as well as
the Forth interpreter written in Ada[20]. We also encourage
our members to create tutorials on the organization web site
to share their knowledge; several ones have already been
written, including one on Ada[23] (in French).

Complementing Ada with other languages such as Forth
and Verilog brought us the flexibility we needed for interac-
tive testing and tightly coupled software and hardware pro-
cessing. We have the feeling that using those two languages
did not endanger the system solid Ada foundations: Verilog
drives hardware peripherals and is controlled directly from
Ada without the need for a specialized Linux kernel device
driver, and the Forth interpreter is written in Ada and is
compatible with the Ravenscar profile.

We will continue to participate to the French robotics cup
and we are currently examining the way to get an even better
and more efficient software base. Our two most promising
leads again involve Ada.

In the future, we could use a standard for model-based
engineering such as AADL[1]. Ocarina[15], developed by
another research team at our institute, would let us partition

our program into various tasks executing on the two boards
and communicating through the lightweight PolyORB-HI
middleware.

We also plan to move the propulsion control system out
of the FPGA onto a third board based on a STM32 proces-
sor programmed in Ada. We would then get a more flexi-
ble system capable of computing complex trajectories. This
would familiarize our organization members with Ada pro-
gramming on bare-board systems without any help from a
full-fledged operating system.
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