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Abstract. This paper introduces the current developments of the SPIF
(Systeéme de Prototypage & Implantation rapide et Faible cotlit) project.
The goal of SPIF is to provide a low cost environment for quick pro-
totyping of embedded distributed real-time applications. The hardware
platform is built with reusable, standard off-the-shelf components. SPIF
is the name of the testbed itself, a mobile autonomous robot controlled
by an embedded real-time system, SPIF-OS. Ada95 is supported as an
high level efficient tool to engineer real-time embedded software. Ada95
extends the original model by providing distribution capabilities.

Both hardware and software have been developed at the ENST Computer
Science Department.

1 Introduction

1.1 Overview

Our concern is to address the problem of prototyping real-time embedded ap-
plications for computer science students as well as for engineers.

— In real-time applications the correctness of the results depends not only on
the logical correctness of their computation but also on the time at which
they are produced. In real-time embedded systems these timing constraints
are set by the sensors and actuators which allow the application to commu-
nicate with the external world. If data inputs and outputs are not processed
within the expected deadlines the applications will not be able to meet their
objectives. It is worth stressing that embedded applications are not only
software but comprehensive systems, tightly joining hardware and software.
The hardware devices involved are of a great variety: miscellaneous sensors
and actuators, engines, etc.

— The hardware board sets additional constraints: the available memory has
generally a small size and there is no disk. The whole hardware must be
compact, reliable and its power consumption must be low.

— The embedded software must guarantee that tasks activated by sensors or
tasks triggering actuators will meet their timing requirements. In distributed
embedded systems, the system must also address the problem of communi-
cating with remote tasks while still offering timeliness guarantees.



— Embedded systems are developed in a specific way: the system and the high
level applications are engineered on a host computer using a cross develop-
ment suite and then downloaded to the target hardware platform. Simulation
on the host computer checks the correctness of the overall design and the
general behavior of the application. But the only way to prove the timeliness
of external events handling and to assess the reliability of the system under
unexpected situations is to download it on a hardware test platform.

— For embedded applications, prototyping is a mandatory stage after simula-
tion because development and debugging are then handled under significant
conditions: the system has to prove its correctness with regards to exter-
nal stimuli, it does not get its input from simulated data. The developers
can check and validate the behavior of both hardware and software under
real-time critical situations.

1.2 Objectives

In fact, crafting an embedded system is a global approach wherein software
and hardware are jointly designed under time, cost, physical performances and
reliability constraints.

In many cases, embedded real-time applications are developed using low level
languages and very difficult to maintain or to reuse on a different target. The
aim of SPIF is to offer students and developers means to elaborate and test
reusable hardware and software embedded components. The design of a hardware
platform and its embedded software will be achieved by putting together basic
hardware and software bricks. This allows a modular and scalable approach
which fulfills the objectives of low cost and quick development.

To meet these objectives, we decided to use Ada95 as a development tool
and to port an Ada95 run-time to the top of SPIF-OS.

Our prototyping architecture is layered as follows:

— the lower level: the hardware platform, a scalable mobile robot driven by a
Motorola MC68302 processor,

— the low level software layer: the kernel, SPIF-OS, a real-time operating sys-
tem,

— the ”portability” layer: a C library and a POSIX [5] threads library. We
chose the Florida State University one [4],

— the high level layer: an Ada95 run-time, the GNAT run-time.

This modular architecture makes it easy to change one of the layers: for
instance we ported RTEMS [10] on top of the SPIF hardware.

The three upper layers make up the software platform. Figure number 1
shows the global architecture of SPIF.

1.3 Structure of the paper

Section 2 describes the first layer of the SPIF architecture: the hardware plat-
form. This platform is a mobile robot. The modularity and scalability of the
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Fig. 1. The SPIF architecture

design gave the ability to build several versions of robots fitted with different
sensors and actuators. In section 3 we present the second layer: the real-time
kernel. The current one is SPIF-OS, developed at ENST. SPIF-OS implements
real-time scheduling algorithms and synchronization policies in a simple and ef-
ficient way. The section 4 is a brief overview of the third layer which includes
the POSIX thread library and the development tools: the GNU suite. In sec-
tion 5 we explain why we chose to port a GNAT run-time library on top of
the SPIF architecture. This section points up how Ada95 extended the original
model, especially by providing distribution tools. Section 6 deals with the cur-
rent teaching applications and works in progress: the use of GLADE and the
porting of RTEMS on top of the SPIF hardware. Finally, section 7 concludes
and presents the ongoing works.

2 The hardware platform

2.1 Design principles

The SPIF hardware platform is an autonomous mobile robot. All the components
involved to build this robot fulfill the constraints of low cost, low consumption
and are as close as possible to industry standards. The input/output devices are
designed as hardware bricks plugged on the board giving the capability to easily
reconfigure the hardware platform.

Indeed, our hardware offers a set of simple and cheap reliable sensors and
actuators which can easily be combined to achieve skillful works.



2.2 Components

The current SPIF robot is driven by a Motorola MC68302 [6] processor equipped
with 1M bytes of E-PROM and 1M bytes of RAM. At the moment, the following
sensors are plugged on the board: an ultrasound device and a luminous sensor.
One low consumption engine is in charge of the steering and another one powers
the driving wheels. The power is supplied by an off-the-shelf battery.

Communications with remote real-time applications take place on a radio
line. Two serial lines are used for tests and debugging.

Up to now, three different hardware boards have been built using the same
processor and software platform, strengthening the expected scalability of the
hardware components. We plan to design a new board equipped with a more
powerful chip by the end of 1997.

Figure not available  Figure not available

(a) Robot 1 (b) Robot 2

Fig. 2. SPIF different hardware platforms

More hardware information is available at : http://www.enst.fr/ “spif.

3 The software platform

We briefly describe the low level software platform: SPIF-OS.

3.1 The kernel

Kernel design. SPIF-OS is a real-time kernel dedicated to embedded systems.
We decided to keep it as simple as possible to reduce the overhead during basic
kernel operations such as scheduling, synchronization and memory management.
This kernel, the core of which is written in C, supports real-time scheduling
(HPF, EDF) and synchronization policies (PCP) [2].

A special care has been given to input/output management: standard device
drivers are provided (engine, steering, ultrasound, luminous sensor, serial line,
radio line) or being developed (camera). A high level input/output library is
built on top of these drivers.

Scheduling. Threads are managed at kernel level: the basic process of SPIF
is very similar to a POSIX thread. The following scheduling algorithms have
been implemented and tested: HPF (High Priority First), EDF(Earliest Deadline
First). A sporadic server [1] has also been implemented and tested.



Synchronization. The semaphores can be given a priority in order to use the
Priority Ceiling Protocol (PCP). This protocol has been implemented and tested
with tasks scheduled by EDF.

Time management and alarms. To operate properly, many devices need to
receive and send signals at a fairly high frequency. The ultrasound device, for
instance, should be sampled at 100 microseconds (10 kHz). If the interrupt timer
is set to this frequency, the system (running on MC68302) is overloaded with
clock interrupts and is not fast enough to handle them. Time management is
based on the joint handling of two counters: one dedicated to the regular clock
and another one for the handling of fast events i.e events frequency of which is
greater than the one of the regular timer. On the actual MC68302 platform, the
main timer is set at 10 milliseconds, and the second one can be as accurate as
100 microseconds.

Input output. A real-time system can be regarded as a three stage machine:
data acquisition from sensors, data processing and then data output to actuators.
Indeed, input/output support must provide efficient, timely, fast and reliable
operations. In real-time embedded architectures input/output management is
the essential issue and must be carefully handled. SPIF offers high level sensors
and actuators management routines written in Ada.

4 Libraries and development tools

At this level, the industry de facto standards have driven our choices.

The FSU POSIX threads library. For compliance with emerging standards,
the FSU POSIX [4] threads library has been ported to the SPIF kernel.

Development tools. We are using the GNU development suite to build our
system. We chose this suite for cost, efficiency and portability reasons. It’s a fully
integrated development environment and Ada95 is available in gcc. A loader has
been developed to download the target code, and a shell make it possible to
interact with the robot through a serial line during the tests.

C library. A C library is supplied with all the usual facilities.

5 Ada95 for SPIF

In order to give the developers (students or engineers) high level programming
tools that provide well defined time, task and synchronization management, we
decided to provide support for Ada95 on our embedded system.



5.1 Engineering embedded software

While engineering real-time software, developers have to tackle hard timing and
synchronization problems [11]. They need to describe these constraints in a sim-
ple and precise way. If they are given a language like C, they will have to handle
themselves the low level synchronization mechanisms by using system calls. They
won’t get any semantic checking to prevent them from usual mistakes. They will
spend a lot of time to develop basic synchronization and time tools instead of
focusing on their end application.

The real-time annex, the protected types, the selective accept and asyn-
chronous transfer of control are powerful and simple tools that give developers
the capability to express clearly the requirements of real-time tasks.

Indeed, Ada95 is a powerful tool for engineering embedded software:

— Ada’s portability allows to test and develop the software modules that will
run on the target in a self-hosted environment before testing them in the
cross-compiled environment.

— Developing real-time applications in C language requires to use the threads
library for synchronization, time management and events handling. With
Ada95 this sensitive work can be carried out at language level, ensuring a
greater consistency.

— Fault tolerance can be implemented through the Ada exception mechanism,

— Data concurrency can be handled by many facilities, including protected
types.

— Very low level data structures as memory or registers location and their con-
tents can be precisely defined, preventing any compiler side effect. Reading
inputs from the actuators or sending outputs to the actuators is no more
handling byte streams but processing data unit, size and dynamic of which
are precisely defined and checked.

The Ada compiler we chose for SPIF is GNAT (The GNU Ada compiler)
because it fully supports Ada95 and its real-time and distributed annexes and
because it is integrated in the gcc suite which offers a free efficient cross devel-
opment environment for most of market processors.

5.2 The port of a GNAT run-time

The GNAT (version 3.0.7) run-time library is roughly split in two parts : routines
that interface with the underlying operating systems and the other ones (callable
by the user or those for internal use only). Almost all the routines are written
in Ada. The first part is the package System.OS _Interface. This package contains
all the kernel dependent routines (time management, etc) and is different for
each operating system. The key point is that there is a POSIX [3] version of
System.OS_Interface. If the OS is POSIX compliant, the port of the GNAT run-
time is quite straightforward.

We used the GNAT run-time library provided for Linux, which is POSIX
compliant, and we successfully implemented it on top of the FSU SPIF POSIX
threads library.



Our tests focused on the following services of the SPIF Ada run-time: excep-
tion handling, protected types, task management, basic memory management.

5.3 GNAT extends the original model

Ada95 extends the original SPIF model by adding new capabilities: semantic
control, high level input/output and, as we detail in the next paragraph, distri-
bution.

Distributing embedded real-time using GLADE. GLADE! is the im-
plementation of the distributed annex, Annex E, for GNAT [12] [13] . In the
SPIF architecture, the medium supporting the distribution is a bidirectional
half-duplex radio-line.

The GLADE run-time is organized around protocols; a protocol is actually
an object (in the object oriented sense) which exports a few primitive operations
such as Connect or Send. A particular protocol object is in charge of commu-
nicating with the same protocol on another partition. It offers a reliable way
to blindly transmit byte streams between partitions without operating on the
content of the stream. A new protocol can be easily added by defining a new
object and overriding the necessary primitive operations.

For the SPIF project, a new protocol called Serial has been designed and
implemented. This protocol deals with non-reliable and possibly half-duplex se-
rial lines (such as a wire or a radio) and is based on well-known token passing
algorithms [7]. Once this protocol has been tested, we just had to add it into
the GLADE run-time to be able to use the full power of the distributed systems
annex without further coding.

The TriAda demonstration. During the last TriAda conference held in Philadel-
phia we set up a demonstration that showed the current state of our works. An
outline of this demonstration is given in figure 3. An Ada application on the
robot communicates with an Ada application on the workstation using a ra-
dio line. This bidirectional communication is achieved using either messages or
RPC’s. The main task of the robot is to avoid obstacles. It executes commands,
sends its speed, direction and distance of the closest obstacle as detected by the
ultrasound sensor. The size of the whole embedded software is about 250 Kbytes.
The mobile autonomous robot used is the one displayed on figure 1(b).

6 Applications

6.1 Teaching

The GNAT run-time on top of the SPIF architecture is a convenient platform to
acquire significant knowledge about crafting embedded real-time systems. The

! GLADE is maintained by ACT Europe (contact@act-europe.fr)
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Fig. 3. Organization of the demonstration

software is engineered under a methodic approach: the timing and synchroniza-
tion constraints are consistently defined, the devices interfaces and the format
of the data sent and received are precisely specified. The sensors and actuators
behavior is non ambiguously described and this enables a positive feed-back from
the software to the hardware design.

SPIF is one of the competitor of the yearly TV broadcast challenge where
robots designed by high-school students friendly fight against each other. Before
the porting of the GNAT run-time, all the embedded software controlling the
robot was written in C, task and time management were handled at low level
by calls to the thread library. Starting this year, critical parts of the fighting
strategy will be programmed in Ada.

6.2 Research

GLADE. Addressing the problems of distributing real-time embedded software
is a major improvement provided by the distributed annex. We demonstrated
the capabilities of GLADE by building a distributed application involving tasks
running on the ground station and the mobile robot which communicate by
remote procedures calls.

RTEMS. We ported RTEMS [8] [10] [9] on the SPIF hardware platform and
we are now testing a GLADE/GNAT/RTEMS toolset on one of our robots.



7 Conclusion

The joint usage of Ada95 and SPIF layers shows that it is possible to design scal-
able reusable components for both hardware and software on embedded systems.
Students and researchers are given the opportunity to efficiently build complex
systems using basic software and hardware bricks. The design and tests of a new
embedded system are achieved by adding features in a modular and incremental
way.

The integration of the GNAT run-time into our prototyping architecture
not only improves the abilities of our toolbox for designing, prototyping and
testing real-time embedded software, but also extends the original model. The
Ada95 distributed annex provides great capabilities for straightforward imple-
mentations of distributed applications. Porting GNAT and GLADE to the SPIF
platform using whether RTEMS or SPIF-OS allows to address the problem of
distributing real-time applications.
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